

S0960-894X(96)00153-9

SYNTHESIS AND EVALUATION OF A β -LACTAM-CONTAINING DIPEPTIDE ANALOG AS A PROTEASE INHIBITOR

Zhijun Wu, Gunda I. Georg,* Brian E. Cathers, and John V. Schloss*

Department of Medicinal Chemistry

The University of Kansas, Lawrence, Kansas 66045

Abstract: A monocyclic 3-amino- β -lactam analog of the dipeptide Phe-Gly methyl ester has been synthesized as a potential protease inhibitor. This β -lactam is a non-time-dependent inhibitor of α -chymotrypsin, carboxypeptidase Y, and cathepsin G. Copyright © 1996 Elsevier Science Ltd

Potent inhibition of human leukocyte elastase, $^{1.5}$ cathepsin G, $^{6.7}$ and *E. coli* leader peptidase 8 by β -lactams has demonstrated the merit of this type of inhibitor for serine proteases. Many of the β -lactam inhibitors synthesized were thought to inhibit through a "double hit" mechanism, where an electrophile was unmasked at the active site upon cleavage of the lactam amide bond. This electrophile would then be attacked by a second active-site nucleophile. However, it was shown that complete inactivation of human leukocyte elastase by *trans*-4-(ethoxycarbonyl)-3-ethyl-1-[(4-nitrophenyl)sulfonyl]-azetidin-2-one, was simply due to the formation of a stable acyl-enzyme intermediate and not due to the action of a second active-site nucleophile. This "single hit" mode of inhibition points to a simpler, more peptide-like β -lactam nucleus around which specific inhibitors of serine proteases could be built.

This communication is a report on the synthesis and initial evaluation of a C4 unsubstituted monocyclic 3-amino-β-lactam analog 1 of the dipeptide Phe-Gly methyl ester. Compound 1 has two major advantages as a protease inhibitor. Without C4 substitution, this compound more closely mimics natural peptide substrates, and it is primed for incorporation into longer peptide structures.

Chemistry: The synthesis of the targeted 3-benzamido-3-benzyl-2-azetidinone 1 from commercially available 2-azetidinone (2), employing an azide transfer as the key reaction, is shown in the Scheme. ¹⁰ Treatment of 2 with *tert*-butyldimethylsilyl chloride (TBSCI) in the presence of triethylamine provided *N*-silylated azetidinone 3 in 93% yield. Benzylation of the lithium enolate of 3 yielded 3-benzyl-2-azetidinone 4 in 78% yield. Reaction of the lithium enolate of 3 with tosyl azide (TsN₃) and trimethylsilyl chloride (TMSCI),

984 Z. WU et al.

according to Kuhlein's protocol, ¹¹ gave 3-azido-2-azetidinone 5 in an unoptimized yield of 23%. The order in which the substituents at C3 were introduced was of importance. When 3-benzyl-2-azetidinone 4 was treated with tosyl azide/TMSCl, 3-azido-3-benzyl-2-azetidinone 6 was obtained in 62% yield. However, benzylation of 3-azidoazetidinone 5 only gave 10% of 6.¹² We also investigated 1,3,5-triisopropylbenzenesulfonyl azide, ¹³ which is a safer reagent than tosyl azide for the introduction of the 3-azido group. However, reaction of the lithium enolate of 4 with trisyl azide provided reaction product 6 only in 35%. A low yield was also obtained when we utilized Evans' protocol for the azide transfer reaction (potassium enolate of 4 and acetic acid instead of TMSCl). ¹³ Removal of the *N*-silyl group of 6 with potassium fluoride gave azetidinone 7 in 61% yield. ¹⁴ *N*-Alkylation of 7 with methyl bromoacetate in the presence of potassium *tert*-butoxide provided azetidinone 8 in 88% yield. The Phe-Gly methyl ester analog 9 was obtained in 84% yield by reduction of the 3-azido group of 8. Finally, the target dipeptide analog 1 was obtained in 85% yield by benzoylation of 9 under Schotten-Baumann conditions.

Scheme

(a) TBSCl (1.2 equiv), Et₃N (1.5 equiv), 0 °C, 1 h; (b) LDA (1.2 equiv), THF, PhCH₂Cl (1.2 equiv), -78 °C, 4 h; (c) LDA (1 equiv), THF, TsN₃ (1 equiv), TMSCl (1 equiv), -78 °C to 25 °C, 4 h; (d) LDA (1 equiv), THF, TsN₃ (1 equiv), TMSCl (1 equiv), -78 °C to 25 °C, 1 h; (e) LDA (1.2 equiv), THF, PhCH₂Cl (1.2 equiv), -78 °C, 3 h; (f) i. KF/CaF₂ (calc. for 0.5 equiv of KF), MeOH, 0 °C, 1 h; ii AcOH; (g) BrCH₂CO₂CH₃ (1 equiv), tert-BuOK (1 equiv), THF, 0 °C to 25 °C, 4 h; (h) H₂ (1 atm), 5% Pd/C, isopropanol, 25 °C, 11 h; (i) benzoyl chloride (1 equiv), EtOAc/sat. NaHCO₃, 25 °C, 10 min.

Biological Evaluation: The Phe-Gly methyl ester analog 1 was screened against each of the following serine proteases: α-chymotrypsin, 15 cathepsin G, 15 elastase, 16 proteinase K, 17 and carboxypeptidase Y. 18 These enzymes were chosen because they are known to be "chymotryptic" in their specificity for the P1 position of peptide substrates. Assays were run in a microtitre plate in a final volume of 250 μL containing 0.05 to 0.1 M buffer (Tris pH 7.5 or pH 8.0, MES pH 6.2), sub-saturating substrate, and 0.05 to 1.2 mM 1. The initial screening was a simple time-course in which enzyme was added to the assay solution containing 0.12 mM 1 and the appropriate substrate. Enzyme activity was followed on a Molecular Devices Thermo_{Max} plate reader with a 414 nm filter. Enzymes displaying sensitivity to the β-lactam were further examined to determine if the inhibition was time-dependent. Carboxypeptidase Y, α-chymotrypsin, and cathepsin G showed initial sensitivity to 1; however, none of the enzymes tested displayed time-dependent inhibition. The simple inhibition constants are given in the **Table**.

Table. Inhibition of chymotryptic serine proteases by 3-benzamido-3-benzyl-2-azetidenone 1.

Enzyme	Inhibition Constant 19 (mM)
α-chymotrypsin	0.3
carboxypeptidase Y	0.3
cathepsin G	0.4
elastase	> 1.2
proteinase K	> 1.2

Summary: We have demonstrated that a simple β -lactam dipeptide mimic can be a non-time-dependent inhibitor of α -chymotrypsin, carboxypeptidase Y, and cathepsin G. The synthetic route employed allows for the introduction of a variety of substituents at the C3 and N1 positions of the β -lactam ring. This will be important for the design of more specific protease inhibitors. The synthetic scheme also provides the necessary framework for incorporation of the "dipeptide" β -lactam into longer peptide chains. The additional peptide structure may provide the binding energy necessary for enzyme catalyzed opening of the β -lactam ring and may produce potent time-dependent inhibitors.

Acknowledgments: We would like to thank the J. R. and Inez W. Jay Research Fund at the University of Kansas and the General Research Fund (Grant No. 5085-0705) for support of this work.

References and Notes:

- Finke, P. E.; Ashe, B. M.; Knight, W. B.; Maycock, A. L.; Navia, M. A.; Shah, S. K.; Thompson, K. R.;
 Underwood, D. J.; Weston, H.; Zimmermam, M.; Doherty, J. B. J. Med. Chem. 1990, 33, 2522.
- (2) Maillard, J.-L.; Favreau, C.; Reboud-Ravaux, M.; Kobaiter, R.; Joyeau, R.; Wakselman, M. Eur. J. Cell Biol. 1990, 52, 213.

- (3) Firestone, R. A.; Barker, P. L.; Pisano, J. M.; Ashe, B. M.; Dahlgren, M. E. Tetrahedron 1990, 46, 2255.
- (4) Wakselman, M.; Joyeau, R.; Kobaiter, R.; Boggetto, N.; Vergely, I.; Maillard, J.; Okochi, V.; Montagne, J.-J.; Reboud-Ravaux, M. FEBS Lett. 1991, 282, 377.
- (5) Doherty, J. B.; Shah, S. K.; Finke, P. E.; C. P. Dorn, J.; Hagmann, W. K.; Hale, J. J.; Kissinger, A. L.; Thompson, K. R.; Brause, K.; Chandler, G. O.; Knight, W. B.; Maycock, A. L.; Ashe, B. M.; Weston, H.; Gale, P.; Mumford, R. A.; Anderson, O. F.; Williamson, H. R.; Nolan, T. E.; Frankenfield, D. L.; Underwood, D.; Vyas, K. P.; Kari, P. H.; Dahlgren, M. E.; Mao, J.; Fletcher, D. S.; Dellea, P. S.; Hand, K. M.; Osinga, D. G.; Peterson, L. B.; Williams, D. T.; Metzger, J. M.; Bonney, R. J.; Humes, J. L.; Pacholok, S. P.; Hanlon, W. A.; Opas, E.; Stolk, J.; Davies, P. Proc. Natl. Acad. Sci. USA 1993, 90, 8727.
- (6) Knight, W. B.; Chabin, R.; Green, B. Arch. Biochem. Bioph. 1992, 296, 704.
- (7) Knight, W. B.; Green, B. G.; Chabin, R. M.; Gale, P.; Maycock, A. L.; Weston, H.; Kuo, D. W.; Westler, W. M.; Dorn, C. P.; Finke, P. E.; Hagmann, W. K.; Hale, J. J.; Liesch, J.; MacCoss, M.; Navia, M. A.; Shah, S. K.; Underwood, D.; Doherty, J. B. Biochemistry 1992, 31, 8160.
- (8) Kuo, D.; Weidner, J.; Griffin, P.; Shah, S. K.; Knight, W. B. Biochemistry 1994, 33, 8347.
- (9) Knight, W. B.; Swiderek, K. M.; Sakuma, T.; Calaycay, J.; Shively, J. E.; Lee, T. D.; Covey, T. R.; Shushan, B.; Green, B. G.; Chabin, R.; Shah, S.; Mumford, R.; Dickinson, T. A.; Griffin, P. R. Biochemistry 1993, 32, 2031.
- (10) All compounds displayed spectroscopic and analytical data in accordance with their structures.
- (11) Kuhlein, K.; Jensen, H. Liebigs Ann. Chem. 1974, 369.
- (12) The low yield in this reaction was due to the formation of a significant amount of unidentifiable decomposition products.
- (13) Evans, D. A.; Britton, T. C. J. Am. Chem. Soc. 1987, 109, 6881.
- (14) Shibuya, M.; Jinbo, Y.; Kubota, S. Chem. Pharm. Bull. 1984, 32, 1303.
- (15) Assay conditions: buffer = 0.1 M tris(hydroxymethyl)-aminomethane (Tris) pH 7.5; substrate = 0.1 M succinyl-alanyl-prolyl-phenylalanyl-para-nitroanilide (Suc-AAPF-pNA).
- (16) Assay conditions: buffer = 0.1 M tris(hydroxymethyl)-aminomethane (Tris) pH 8.0; substrate = 0.08 M succinyl-alanyl-alanyl-para-nitroanilide (Suc-AAA-pNA).
- (17) Assay conditions: buffer = 0.1 M tris(hydroxymethyl)-aminomethane (Tris) pH 8.0; 0.05 M CaCl₂; substrate = 0.1 M succinyl-alanyl-prolyl-phenylalanyl-para-nitroanilide (Suc-AAPF-pNA).
- (18) Assay conditions: buffer = 0.05 M 2-(N-morpholino)ethanesulfonic acid (MES) pH 6.2; substrate = 0.5 M *N*-benzoyl-tyrosyl-para-nitroanilide (BTNA).
- (19) Concentration of 1 that produces one-half maximal enzyme activity.